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In classical work, Mathrron and the Marsilly showed that superdiffusive scaling 
of mean-square displacements occurs in transport diffusion for stratified flows 
with steady simple shear layers and long-range spatial correlations. More 
recently the authors have calculated a formula for the non-Gaussian large-scale 
long-time renormalized Green function for these problems. Here the scaling laws 
and renormalized Green functions for diffusion in "nearly stratified" flows are 
studied; in such flows the simple shear layer with long-range correlations is 
perturbed by incompressible flows with short-range correlations. Here it is 
established that these flows belong to the same universality class as the simple 
shear layers, with a renormalized Green function with a similar structure but 
reflecting homogenization by the transverse displacements. The tools in the 
analysis involve a modification of homogenization theory and also rigorous 
diagrammatic perturbation theory. 

KEY WORDS: Superdiffusion; anomalous transport; random flows; 
homogenization. 

I .  I N T R O D U C T I O N  

The stochastic Langevin  equa t ion  

dX(t)  
dt = V(X(t))  + (2D) ~/2 r/(t) (1) 

where V(x) is a random,  divergence-free velocity field and q( t )  is a 
6-correlated white noise, arises in m a n y  si tuations in mathemat ical  physics, 
most  no tab ly  in the descript ion of the mot ion  of tagged particles in flow 
through porous  media. For  simplicity, we will assume that  the velocity is 
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statistically homogeneous and has mean zero. It is well known since the 
work of Taylor that the presence of a stirred ambient fluid enhances the 
rate of dispersion of particles and, in this regard, two generic universality 
classes of random velocities have been identified. These universality classes 
correspond to either diffusive behavior at long time scales or superdiffusive 
behavior. For the first class of velocity statistics, the mean-square displace- 
ment 

a2(t):E{XZ(t)} 

[-E{. } denotes averaging with respect to the random force q(t)] satisfies 

(~=(r)> 
lim 2dD* 

l ~ o 0  t 

where D* is an effective diffusion coefficient such that D < D * <  +oo, d is 
the spatial dimensionality, and {. ) denotes averaging with respect to 
velocity statistics. For the second class of velocity statistics, the mean- 
square displacement is superlinear, i.e., 

(~2(t))  >> t, t--+ oo 

These two categories of velocity statistics differ greatly in the statistical 
properties of the paths X(t) for large t. For diffusive velocity statistics, it is 
known that the solution of the Langevin equation (1) is self-averaging 
in the sense that the normalized, unaveraged mean-square displacements 
converge, i.e., 

lim a2(t) = 2dD* (2) 

in probability (and thus almost surely a subsequence), so that sample-to- 
sample velocity fluctuations are irrelevant as t--+ 00. More generally, it can 
be shown that the Green function, or probability density P(x, t) for the 
position of a particle which starts at x = 0 at t = 0, satisfies 

lima_dp(X t )  1 e_lXl2/4D, t 
a,o ~ , ~  = (4~D.t)d/2 (3) 

in probability, where D* is the effective diffusivity in (2). An essentially 
necessary and sufficient condition for incompressible, mean-zero velocities 
to give rise to diffusive behavior is that the Eulerian two-point correlation 
function R ~ ( x ) =  (V~(x) V~(0)) satisfy the condition 

f o d t l f  R~(x) e Ix*2/4D' ] (4nDt)d/2 ddx < +oo 
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or, equivalently, 

fRd#(k) 
ikl2 < +oo (4) 

where @(k) is the Fourier transform of R~(x). This result was established 
in ref. 10. This condition characterizes the universality class for which 
diffusive behavior holds; it states quantitatively that the ballistic motions 
arising from long-wavelength components of the velocity field are balanced 
by the molecular diffusion and have a negligible effect on the long-time 
motion. For this class of velocities, the Lagrangian particle has a finite 
mean relaxation time in which it "samples" completely the random field 
V(x), after which it reaches the asymptotic Gaussian limit for every 
realization of V(x). Condition (4) is also equivalent to the existence of a 
statistically homogeneous vector potential A satisfying 

such that 

v x A ( x )  = V ( x )  

<IA(x)I=>= <IA(0)I2>< + ~  

Superdiffusion occurs when the integral in (4) diverges and thus any 
vector potential of V(x) will necessarily have larger and larger fluctuations 
as fxl --, ~ .  The study of computer simulations and a few tractable models 
shows that sample-to-sample velocity fluctuations are then critical in 
determining the behavior of cr2(t) and P(x, t) at large times/distances. 
Moreover, the superlinear exponent of the average mean-square displace- 
ment <a2(t)) depends on the rates of infrared divergence of #(dk)/lk[ 2, or 
equivalently on the fluctguations in the amplitude of the vector potential 
([A(x)l 2) for large x. Because of this, the universality class of super- 
diffusive velocity fields is in fact composed of infinitely many "subclasses" 
according to the infrared behavior of the velocity statistics. 

This phenomenon was illustrated in the work of Math6ron and de 
Marsilly ~l) on dispersion of pollutants in groundwaters. These authors 
considered a class of "stratified" velocity statistics in two space dimensions 
of the form 

for which the velocity correlation function (VI(y) V1(0)> = R(y) satisfies 

j~V(y-s)R(s)ds~lyl~a2-', y~oo (6) 
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where 0 < e < 2 ,  and a represents a typical length scale. The velocity 
potential (stream function) 

I//(y) = f~ VI(S ) ds 

grows as y ~ ~ ,  since 

(;o 2) ;o (Iq;(y)12> = Vl(y)dy = 2  ( y - s )  R(s)ds~2lYl~a 2-~ (6') 

Math6ron and de Marsilly showed that the corresponding mean-square 
displacement a~(t)= E{x(t) 2} is superlinear, and that 

lim <a2(t)> C~'2a2 (7) ,+ ~ t 1 +e/2 (2D)1-~/2 

where V2=(IVI(0)[2)  and C~ is a numerical constant. Here D is a 
(phenomenological) transverse diffusion coefficient/1) 

The calculation of the asymptotics for the Green functions for such 
stratified models was done for the first time in ref. 2. We considered a class 
of random stratified fields of the form (5) with 

Va(y) = P Ik[ (1-,)/20~(k ) eiky/, dW(k) (8) 

where 0~(k)  is an ultraviolet cutoff satisfying 0 ~ ( k ) =  1 and decaying 
rapidly at infinity. The notation dW(k) in (8) denotes stochastic integration 
with respect to Gaussian white noise. Our motivation for studying such a 
model came from the theory of eddy diffusivity for hydrodynamic turbulent 
transport of passive scalars, and the study comprised a much wider class of 
statistics, including time-dependent velocities, which are important for tur- 
bulence modeling, but are not relevant in this discussion. The assumption 
of the Gaussianity of dW(k) is not essential and was removed in ref. 3. The 
characterization of the coarse-grained limit of the Green function for par- 
ticle displacements in the x direction Pl(x, t)=Prob{X(t)=xlX(O)=O} 
that emerged was that, for each e E(0, 2), there exists a time-scaling 
function p(6)= 61/t~ +,/2) whic h corresponds to the exponent in (7)--such 
that 

,im:( ' )) ato6 P , [p(~)]2 =P(x,t) 
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where P(x, t) is defined via its Fourier transform, /5(k, t), 

if(x, t )= . if(k, t)eikX dk 
o o  

by 

~(k, t ) = E  exp - 2z_~/ZD~_,/2 F,(~(s)- f l (s ' ) )dsds '  (9) 

The integration in (9) is with respect to Brownian motions/~(t), 0 < t < 1, 
and the function F,(y) appearing in the exponent is given by 

f 
+ o O  

F,(y) = rkl I ~e ~ky dk 
- - o o  

sign(y) 
C~ l Y l 2 _ f  for e :~ l  

lC16(y)  for e =  1 

where C~, C1 are numeric al constants. Clearly, .P(x, t) is non-Gaussian--it  
is a mixture of Gaussians. This result can be regarded as the counterpart 
of the homogenization theorem (3) for the case of stratified velocities with 
superdiffusive behavior. Recently, Bouchaud et aL (4) and Zumofen et aL ~13~ 
studied a special case of stratified disorder consisting of an array of infinite 
parallel "channels" of width a along which the velocity is a random 
variable that takes the values _+ V independently with equal probability, 
which corresponds to e = 1, and recovered the characterization (9). These 
authors put further in evidence the non-Gaussian behavior of P(x, t) by 
computing the higher-order moments and showing that 

lim (E(x(t))2") (2n)! 
, ~  (E(x(t))2)  "> 2"n! 

and by estimating the x ~ oo behavior of P(x, t). On the other hand, the 
fluctuations of the Green function were analyzed by us in ref. 2, where we 
showed that 

lim ')In / ~ o  , p(-~)2 ~ P(x,  t)" 

for all n > 1. 
A natural question that arises in connection with these stratified 

models is to determine the universality class of random velocity fields V(x) 
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which give rise to renormalized Green functions of the form (7). This is an 
issue of some physical interest if one wants to apply the theory to realistic 
velocity statistics which are not exactly stratified, but yet appear to have 
long-range correlations only in certain directions. The main contention in 
this paper is that Green functions analogous to (7) arise generically for a 
class of random velocity fields which are "nearly stratified," in the sense 
that they have the structure 

V(x,y)=(VI-(oY---~))+(UI(X'Y)~\ e2(x ' Y)./ (10) 

where Vl(y ) satisfies the assumption (6) or (6') of the stratified models and 
the vector field U(x, y ) =  (U(x,y),  U2(x, y)) is incompressible, has mean 
zero, and satisfies the mean-field condition (4) corresponding to normal 
diffusion. This corresponds to flow in a stratified heterogeneous porous 
medium, the perturbations U(x, y) varying only over short wavelengths 
[relative to VI(y)]; see Fig. 1. Intuitively, we expect the solution of the 
corresponding Langevin equation 

dx(t) 
dt 

= Vl(y(t)) + Ul(X(t), y(t)) + (2D) 1/2 r/l(t ) 

dy(t) 
d t  

- U2(x(t), y(t)) + (2D) 1/2 t/z(t ) 

(11) 

to behave as follows: on a coarse-grained scale, the y component of the 
path y(t) will approach (statistically) a Brownian motion. Moreover, the 
contribution of the term Ul(X(t), y(t)) to the velocity of the x component 
should be negligible in the long-time limit. Therefore the system will behave 
like the Mathrron-de Marsilly simple shear flow and the effective Green 
function in the x direction should approach the function /5(x, t) given in 
(9). However, the y component will "feel" the advection from the compo- 
nent U2(x(t), y(t)) of the velocity, which will enhance its rate of dispersion. 
Therefore, its coarse-grained limit behavior should be characterized by an 
effective transverse diffusivity D*y > D, which is determined by the total 
velocity field V(x, y) and thus, in the definition of P(x, t), the "bare" 
diffusivity D should be replaced, self-consistently, by the renormalized 
transverse diffusivity Dy*. 

A justification of this picture hinges on showing that an effective 
separation of scales between the diffusive y motion and the superdiffusive 
x motion exists. Namely, these models should have the property that the 
y(t) motion "thermalizes" in a time scale which is short with respect to the 
time scale on which superdiffusion occurs. Moreover, a crucial ingredient in 
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Fig. 1. (a) Level sets of the velocity stream function ~k(x,y)= W(y)+sinxsiny, where 
W(y) is a continuous-time random walk. This corresponds to a nearly stratified flow 
composed of a "purely" stratified Vl(y ) component corresponding to e = 1 and to a perturba- 
tion U(x, y) = [sin x cos y - cos x sin y]. The solid lines represent streamlines corresponding 
to positive values of O(x, y) and the dashed lines represent streamlines corresponding to ~ < 0. 
(b) Level sets of the "unperturbed" stream function r y) = W(y). 

8 2 2 / 6 9 / 3 - 4 - 1 6  
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this self-consistency argument is that sample-to-sample fluctuations in the 
velocity statistics should not affect the y(t) motion, which thermalizes over 
(almost all) individual realizations of V. 

The goal of this paper is to show how all this can be made rigorous. 
We will show that the longitudinal and transverse Green functions 
P~(x, t)=Pr{x(t)=xlx(O)=O} and P2(Y, t)=Pr{y(t)=yl y(0)=0}  
satisfy, respectively, 

lira 6 1 e  1 , =/~l(X, t) (12) 
610 

and 

6+0 , ~ = (4/zD*y) l / 2 e x p  - -  4D*yyt (13 )  

in probability, where p(6)=61/~1+~/2), and -Pl(X,t) denotes the Green 
function defined in (9) with D replaced by D'y, the effective transverse 
diffusivity. This diffusivity is obtained by solving a "cell problem" (in the 
sense of homogenization theory), (5,6,1~ namely, let Z(x, y) be a suitable 
solution of 

DAz(x, y) + [ VI(y) + Ul(x, y)] - -  
aZ(X, y) aZ(x, y) 

+ U2(x, y) = U2(x, y) 
~x ~y 

(14) 

Then, Dy* is given by 

D y * = D [ I + (  ~ 2+ #Z(x,y) 2) ] (15) 

The mathematical tools used to obtain this result are borrowed in part 
from homogenization theory. More specifically, we adapt a construction 
of Papanicolaou and Varadhan (5~ for averaging diffusion equations with 
random coefficients to the present setting of nearly stratified flow. This 
allows us to show that the motion in the y direction is indeed self-averaging 
and diffusive, as well as to eliminate the small-wavelength components of 
the velocity in the x direction and to characterize the effective diffusion 
coefficient D*y. 

In Section 2 we introduce a special class of nearly-stratified velocity 
fields of the form (5) which can be analyzed regorously by the 
homogeneization method. In these models, the U field is assumed to be 
periodic in the x direction, for technical reasons. The analysis given here 
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generalizes in a straightforward manner to fields that are quasiperiodic in 
x, using a result due to Kozlov. (6) In Section 3, the diffusive behavior in the 
y direction is established and in Section 4 we derive the main result, i.e., the 
characterization of the renormalized Green function Pl(x, t). In Section 5, 
we take a different approach to the renormalization problem, using a 
Stieltjes integral representation for the matrix elements of the averaged 
Green function, developed in ref. 7. Here we do away with (quasi) 
periodicity in the x direction and assume only that Vl(y ) satisfies (6) with 
0 < 5  < 2  and that U(x ,y)  satisfies the mean-field condition for normal 
diffusion (4). This route yields less precise characterizations of the effective 
Green functions, but gives the correct value of the scaling function p(b)= 
31/(1 +e/2) in a more general setting. 

2. S T A T I S T I C A L  M O D E L  A N D  E S T I M A T E S  FOR T H E  
C O R R E C T O R S  

In this section we describe a class of velocity statistics corresponding 
to nearly stratified flows. Following closely Papanicolaou and Varadhan, ~5) 
we use a Hilbert space formalism which is a natural setting for the 
homogeneization method. Accordingly, let {s -~, P} denote a probability 
space endowed with a group of measure-preserving transformations {ry}, 
y ~ ~. This group defines an action of the real line R on the Hilbert space 
L2(~, P) of square-integrable functions f(~o), by means of the operators 

ryT(~) :7(~y~), y~R, ~o~  

We assume that {zy} is stochastically continuous, and that (Q, X, P) 
is separable, so that for any measurable set A of real numbers, 
SUpy~A Tyf(O) is a measurable random variable (see ref. 5). The action of 
{~y}y~R is assumed to be ergodic. This means that if )~(e)) satisfies 

ryT(~) =7(~) 

almost surely for all y ~ R, the ~7(~o) = const. Integration with respect to the 
measure P(&o) will be denoted by angular brackets, ( - ) .  

We define suitable Hilbert space ~o and ~ of periodic functions of x 
with values in L2(~2, P). Accordingly, if p is a given period and 

f(x,~o)=f(x+p,~o), xeR, ~ o ~  

we set 

~m((~) = J~(X, (o)e -imx dx (16) 
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for m = 2kx/p, k integer, and we define the norms II Iio and [l'lll by 

iJ?41 = 2 <lL(og)l > 
m 

and 

[I)7[[12 = Z  (1 +m2)<l~m(09)[2> 
m 

The Hilbert spaces ~o and ~ are defined as the completions of the spaces 
of bounded, measurable functions f (x ,  09) under these norms. Clearly, 

and 

1 P 

il?il =pl ~ <17(x, 09)12> dx 

1 P 

The random velocity V is introduced next. We consider a function 
~'1(09) in L2(f2, P)  and functions ~'](x, o9) and U2(x, 09) in ]go. Random 
functions VI(y), Ul(X, y), and U2(x, y) are then defined by setting 

Vl(y ) = ~'1(~Cy09) (17) 

and 

Ui(x, y) = ~'~(x, zy09), i= 1, 2 (18) 

These functions are periodic in x and statistically homogeneous in y. 
[Conversely, to every triple VI(y), Ui(x, y), i = 1, 2, of stationary random 
processes which are stochastically continuous, ergodic in y, and periodic in 
x, there exists an abstract probability space (g2, Z, P) and a shift operator 
Zy, y ~R, such that (17), (18) hold. (5)] We assume that the mean valocity 
vanishes, so that 

( V l ( y ) )  = o 

and 

l fo(Ui(x,y))dx=O, i = 1 , 2  
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Finally, we make specific assumptions on the infrared behavior of 
Vl(y ). Namely, we define the potential 

and assume that 

~,(y) = Vl (s )  d~ 

(l~O(y)12> ~ ff2a2-~y~, y--* o0 (19) 

where V is a typical velocity, a is a typical length scale, and 0 < e < 2. 
Moreover, we will assume that the rescaled process 

p~/20(Y ) ,  0 ~ < y < ~  (20) 

converges in distribution to a Gaussian process with independent 
increments (see Remark 2 at the end of Section 4). The first hypothesis is 
precisely the assumption (6') made by Math6ron and de Marsilly in their 
calculations of superdiffusive mean-square displacements. The latter one 
states that the velocity statistics are in the domain of attraction of Gaussian 
statistics when rescaled consistently with (20). This assumption is satisfied 
by the velocity fields (8) and a variety of other statistical models. (3~ For 
instance, the well-studied example of a velocity field VI(y) that is piecewise 
constant and takes value ___ P randomly and independently on layers of 
width a satisfies these assumptions with e = 1. The limit as p ~ 0 of the 
stochastic process (20) defines, loosely speaking, a coarse-grained Gaussian 
velocity potential ~(y), which is "self-similar." This potential is then 
necessarily of the form 

~(y)  = const �9 Va 1 -~/2 fo" dN(s) (y-;? 

with N(s) being a standard Brownian motion and a = �89 e), i.e., ~(y)  is 
a fractional Brownian motion. Equivalently, 

~/2 ( + ~ -- ( i  + ~)/2(eiky ~(y) = Va ' -  j Ikl - 1) dN(k) 
oo 

We note also that, formally, the "coarse-grained" velocity 

V,(Y) = ~ y  ~(Y) 

is given by 

VI(Y) = ffa'-~/2 Ik]('-~/2e i*y dN(k) (21) 
az) 
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and hence is a generalized Gaussian process in the sense of Gel'fand 
and Vilenkin. (8) Due to the infinite spectral range, which is ultraviolet 
divergent, VI(y) is not square-integrable for any e, 0 < a < 2. For instance, 
if a = 1, VI(Y)is Gaussian white noise, with (VI(Y) VI(0)) oc &(y). 

It is convenient to work with the energy spectra of random fields in 
~0. Since { Ty} is a commutative group of unitary, strongly continuous 
operators on L2(g2, X, p),(5)one has the representation 

r y  = eik "y dgk 
oO  

where {gk} is a spectral family of projection operators in Lz(f~,P). 
Accordingly, for any field f(~o) in L2(Q, P), 

f ( y ) -  ryj~= f e 'ky dekj 7 

and thus dgkj 7 can be identified with the random spectral measure 
associated with the stochastic process f(y). Elements of ~o can also be 
represented in spectral form, observing that the Fourier coefficient )~m(~o) of 
f(x, o9) defined in (17) satisfies 

- - o O  

Hence, we have 

f(x,y)=TyjT(x, co)= 2 eimx+ieYd8k~m 
m - - o o  

and dgk f~m is identified with the spectral measure of f(x, y). We denote by 
J/g the subspace of ~0 composed of fields f(x, o2) such that 

a<je Li2> 
)__,|, k2 +m 2 < + ~  (22) 
m - - o o  

The measure d(lg~)~ml 2 ) can be identified with the Fourier transform of 
the correlation function 

'fo R(x,y) P ( f (x+h,y) f (x ,O))dh  

Hence, inequality (22) is the analogue of condition (4) for the field f(x, y). 
Accordingly, we will assume throughout this paper that the perturbation 
U(x, y) belongs to the space Jr i.e., 

+~ d([~k~ml 2) 
Z i -k2-5-+-~m 2 < + ~  (23) 
m 
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For fields in -~o, we have m=2kn/p and hence the condition (23) is 
equivalent to 

f+oo d ( [ ~ U o l 2 )  
- ~  k2 < oO 

Nevertheless, we state it in the general form (23), which is suitable for 
generalizations to quasiperiodic fields in which Fourier modes may 
accumulate near rn = 0. 

In the following proposition, we observe that the assumption (19) on 
the growth of the potential is equivalent to an algebraic rate of divergence 
of the integral 

I d~ I~A~k_Wl I 2 ~ 
k 2 

This is an elementary consequence of inversion of the Fourier transform. 

Proposition 1. The conditions 

( lO(y)12~y ~, y--+oo 

and 

are equivalent to 

fo' ( Y -  s) R(s) ds~ y ~, y--. ~ 

d(  [~k ~'112 ) 
j % --,0 (24) 
I~ l~  Ikl = ~ a  o- | 

This characterization of the spectrum of ~'l will be used in Section 4. 
The following lemma establishes the existence of the gradients of the 

auxiliary functions Z(x, y) satisfying an equation of the form (14) in the 
Hilbert space ~o. 

L o m m a  2. Let F(x, aJ) be an element of J / s u c h  that 

1 ~o ~ (~'(x, e))) dx=O 
P 

Then, there exists a field E(x, co)= [~71(x , ~o), E2(x, o9)] in 3(f 0 such that 
E(x, y) = E(x, rye)) satisfies the equations 

8 
~---~ E2(x, y) = ~y El(X, y) (25) 
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and 

D ~---~ E~(x, y)+ D ~---f E2(x, y) 

+ [ Vl(y) + UI(X, y)]  El(x, y) + V2(x, y) E2(x, y) = F(x, y) 

where F(x, y) = T'(x, rye)). Moreover, E has a average zero, i.e., 

1 
I" (E(x, e))) dx = O 

P Jo 

(26) 

and we have the a priori estimate 

Iltllo~ < m2 + k = l 

I_emma 3. In addition to the asumptions of Lemma 1, suppose that 
the fields (8/8x) Ul(X, y), (t3/t~x) U2(x, y), and (O/t3x) F(x, y) are uniformly 
bounded, i.e., 

~--~F(x,y) + ~--~Ul(x,y) + ~ U 2 ( x , y )  <~C1< + ~  

for some constant C1. Then E belongs to ~ and we have 

1 + C~_ f+o~ d(l~kFml2> 
IIEII ~ <---~-- ~ k 2 + m  2 | 

m - - ~  

For a given _P(x, e)) in J//, we define the corrector Z(X, y) corresponding 
to the function F(x, y) = F(x, rye)) in terms of E by the formula 

Z(x, Y)= I[ E~(s, O) ds + fo E2(x, s') ds' 

Using Eq. (25), it follows that 

~z(x, y) 
- -  - El(x, y ) 

~x 

Oz(x, y) 
- -  - E2(x, y) Oy 

and Z(0, 0 ) =  0, with probability one. By definition, the function Z(x, y) is 
periodic in x with period p. Note also that X(x, y) is not statistically 
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homogeneous and, in principle, can grow as y ~ oo. The next lemma 
establishes that this growth is sublinear, uniformly in x. More precisely, we 
have the following result. 

L e m m a  4. Assume the hypotheses of Lemma 3. Then, for each 
M > 0  and c~>0, 

l imPr  f sup sup 6Z(x,~)>c~}=0 | 
g,[O klyl <M x~R 

We will also use the following lemma, which gives an estimate of the 
variance of suply I .<M SUPx~R [6Z(x, Y/fi)l. 

k o m m a  4'. Suppose that F satisfies the assumptions of Lemma 3. 
Then 

( ( y )  2 ) C ( 1  _~ m 2 , f + c ~ d ( l ~ k P m l 2 )  
sup sup (~2 Z X, ~ ~ D 3 2 k 2 _[_ m 2 

]yl<~M x~R m --oo 

where C is a constant proportional to 

sgp 0x + | 

The proofs of these lemmas are given in the Appendix. 

Remark. We assumed here that the "perturbation" of the stratified 
flow U(x, y) is a stationary stochastic process in y with values in the space 
of periodic functions. We point out that the same method can be used to 
study the cases in which U(x, y) is periodic in both x and y as well as per- 
turbations which are quasiperiodic in x and/or y. This follows from the 
general framework of Papanicolaou and Varadhan, to which the reader is 
referred for details. We point out, however, that the proofs of Lemmas 4 
and 4' given in the Appendix make use of the periodicity in x [see, for 
instance, Eq. (A.8)]. Some generalizations of these results to quasiperiodic 
perturbations which satisfy appropriate Diophantine conditions (6) should 
be straightforward. 

3. D IFFUSIVE M O T I O N  IN THE y D IRECTION 

The goal of this section is to show that the rescaled stochastic process 

6y(-~2 ), 0 < t < l  (27) 
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converges in distribution to Brownian motion (2D'y) ~/2 W(t) as 6 ~ 0 ,  
where Dy* is defined in (29). Moreover, we show that (27) is self-averaging, 
in the sense that W(t) is independent of  the velocity statistics. This is a key 
point in the subsequent analysis of superdiffusion in the x direction. 

The argument that we use to establish diffusive behavior is borrowed 
from Papanicolaou and Varadham (5) (see also Kozlov (6) and Oelschlager(9)). 
In addition, we make strong use of the fact that the corrector variance 
(IZ(x, y)l 2 ) grows only in the y direction (Lemma 4). 

Let Z(x, y) denote the corrector corresponding to F(x, co) = ~'2(x, ~0). 
Then X(x, y) satisfies the equation 

D Az(x, y) + IVy(y )+ U~(x, y) ] - -  
az(x, y) az(x, y) 

+ U2(x, Y)  - -  U2(x , Y)  Ox ~y 

and VZ(x, y ) =  E(x, y) is such that E(x, ~o) belongs to the space ~ .  Let 
(x(t) ,y(t))  denote the solution of the stochastic differential equation (11) 
with initial condition x(0)= x, y(0)= 0, with x distributed uniformly in the 
interval [0, p]. Applying It6's formula to X(x(t), y(t)) we obtain 

Z(X(t), y(t)) = Z(x, 0) + (2D) m ( '  aZ(x(s)' y(s)) . . . .  
Oo ~ apltSJ 

+ (2D)1/2 Io ~ (x(s), y(s))dflz(s)+ fo U2(x(s), y(s))ds 

where fl~(s) and ]~2(S) are  independent Brownian motions defined by 

s /L(s) = qi(r) dr, 
Therefore, we have 

i = 1 , 2  

y(t) - Z(x(t), y(t)) 

= -- Z(x, 0) + (2D) m flz(t) 

'[aX~x Yy~X 1 + (2D)1/2 Io (x(s), y(s)) d~l(s) + (x(s), y(s)) d/~g(S) 

= - -  Z(x ,  0) + (2D) 1/2 fl2(t) + (2D) 1/2 i t E(x(s), y(s)).  dp(s) 
JO 

We define the process 

M( t ) = (2D )I/2 [ fl2( t ) + I~ E(x(s), y(s) ) dfl(s)] 
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which is a continuous-time martingale with quadratic variation 

2 CZ 2 O(t)=2D fs {[~x(X(s),y(s)] +[l+-~y(X(s),y(s)) ]}ds (28) 

The process y(t)  can be written in the form 

y(t) = Z(x(t), y(t)) -- Z(x, O) + M(t) 
and hence, rescaling space and time, 

As in usual homogenization arguments, (s'9'12) we show that aM(t/a 2) 
converges to a Wiener process, almost surely with respect to the underlying 
measure induced by the velocity statistics [the probability space 
(f2, Z', P)] ,  and that the remainder 

converges to zero as 6 ~ 0. 
The first part is standard. In fact, 3M(t/~ 2) is stochastically equivalent 

to 

where W is a standard Brownian motion and Q(t) is the quadratic 
variation in (28). Moreover, since (x(t), y(t)) is ergodic with respect to the 
product measure 

dx 
- -  x P(de)) 
P 

by the Birkhoff ergodic theorem, the rescaled quadratic variation 

2 _{_8~ y(s))21} ds 62Q(-fi2)=a22D ;f/a2{[~x(X(s),y(s))] +[ 1 ~7(x(s), 

converges with probability one to 2D*y t, where 

Dy*=D[I +I ('E(x'(~ dx] 
This implies that, with probability one with respect to velocity statistics, 
the paths 6M(t/62), 0~< t ~  1, converge in distribution to (2D*.~) 1/2 W(t), 
where W(t) is standard Brownian motion. (9) 
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Next, we consider the remainder term, 

It is convenient to introduce the stopping time 

0~ inf{,.~, ,~(~):.} 
Clearly, 

sup 6 Z ( x ( ~ ) , y ( ~ ) ) - f Z ( x , O ) ~ < 2 s u p  sup 6 Z(x ,~ )  
t<~ON x~R ly[<~N 

and hence, applying Lemma 3, we conclude that for all c~ > 0, 

f ~y(') ( ' ) )  l imPr  sup ~ - 6 M  ~ > 
6 ~ 0 k.t <~ ON 

=l~oPr{:uP ~,(x(§247 0, ~} 
~<limPr sup sup 6 x, > ~  = 0  

O,LO kx~R [yl<~N 

This implies that the paths 

{ I  A ON'~ 
by \ ~ } ,  0 ~ < t < l  

(A = minimum) converge in distribution to (~/3. p/2 W(t/x ON), for all N. ~----yyl 
To remove the stopping time ON, we define P~v to be the distribution of 
6y(t ^ 0N/62), 0 ~< t ~< 1. Let K denote an arbitrary compact set in the space 
of continuous paths C[0, 1]. Then K is bounded, i.e., 7(t)sK implies 
supt<l IT(t)l < N  for some N. Thus, 

l imPr  @ ,0~<t~<l e K  
850 

= lim Pr @ 0 ~ t ~ < l  e K  

= l i m  P~(K) 
650 

= Pr{ [(2D*,y) I/2 W(t ^ ON), 0 <~ t <. 1 ] ~ K} 

: P r {  [ ( 2 0 * )  1/2 W ( t ) ,  0 ~ t <~ 1] ~ K} 
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By choosing K large enough, we can make the latter probability arbitrarily 
close to 1. This implies that the distributions of [@(t/62), 0~< t ~< 1 ] are 
relatively compact (tight), and identifies the limiting distribution as that of 
(2D'y) ~/2 W(t), 0 ~< t ~< 1. Notice that this argument also shows that 

t~<l 

tends to zero in probability. 
For later purposes, we are interested not only in the asymptotic 

distribution of @(t/62), 0 ~< t ~< 1, but also in the joint limiting distribution 
of the pair of processes 

I 6 Y ( ~ ) ,  Va(Y)], 0~<t~<l, - - ~ < y <  +oo 

where (~'a(Y)} is a sequence of processes which are measurable with 
respect to the a-algebra generated by VI(y), y ~ ~. [-Intuitively, Va(Y) is a 
function of VI(.), for each 6 and each y.] To study this joint distribution, 
we observe that it is the same limiting distribution as for the pair 

[ 6 M ( ~ ) ,  Va(Y)], 0~<t~<l, - o o < y <  +oo 

since 

tends to zero in probability. The following result characterizes the joint 
distribution. 

Proposition 5. (i) The paths 6y(t/62), 0 ~< t ~< 1, are asymptotically 
independent of the velocity statistics. More precisely, the joint distribution 
of (2D.*v) 1/2 W(t), 0 ~< t ~< 1, and ~'~(co) is the product measure 

PW | p(dcn) 

where p w  is the distribution of a Brownian motion (2D'y) 1/2 W(t), 
0~<t~<l. 

(ii) Let { ~'a(Y)} be a sequence of Vl-measurable processes converging 
in distribution to a process V(y) with distribution /se. Then, the joint 
distribution of [6y(t/62), Va(Y)] converges to the product measure 

p w |  

In particular, (2D'v) 1/2 W(.) and V(.) are statistically independent. | 
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ProoL Notice that the statement (ii) implies (i), with #'~(y)= V~(y). 
To prove (ii), we use the fact that if suffices to characterize the limiting 
distribution of the processes [6M(t/62), ~'~(y)], 0~<t~<l, y ~ R .  To do 
this, let ~ , = ~ 1 ( m l  ..... mr) and ~ 2 = ( ~ 2 ( V l  ..... Us) denote two bounded, 
continuous functions depending on a finite number of variables, and set 

t l  t r 

where 0 ~< tl < t2 < " �9 < tr ~< 1, and 

~ [  Vo( ' ) ]  = ~ : [  Pa(Y~) ..... V~(Y~)] 

where y~ <Y2 < "'" <Ys. From previous arguments in this section, we have 

almost surely with respect to the velocity statistics. Hence, 

= <E~W{q~, [(2D'y) '/2 W(.)]  } m2[ if( ' )]  > 

= EPrV{ ~ ,  [(2D*y) 1/2 m(.  )} < O 2 [ V ( - ) ]  > 

where in the last step we used the fact that Dy* is a constant. This 
shows that the joint limiting distribution is indeed product measure, as 
claimed. | 

4. S U P E R D I F F U S I O N  IN T H E  x D I R E C T I O N  

The x component of the solution of the Langevin equation (11) with 
initial condition x (0 )=x ,  y (0 )=0 ,  where x is distributed uniformly in 
[0, p],  is given by 

L x(t) = x + (2D)  1/2 ill(t) -I- gl(x(s),  y(s)) ds + r l (y (s ) )  ds (29) 

Introducing the coarse-grained time scale p = p(6) = 61/t~ +,/2), we have 

6x t = 6x + 6(2D) m ~1 + • Ul(X(S), y(s)) ds 

t/p 2 (, 

+ 6 | Vl(y(s)) ds 
~0 
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Our goal is to show that the asymptotic probability distribution of the 
random variable bx(t/p 2) is the function Pl(x, t) described in (9), with 
D=D*y. Recall that e is the exponent characterizing the infrared 
singularity of the energy spectrum of V~(y) or, equivalently, the growth of 
the potential ~ ( y ) =  ~Y Vl(S), i.e., 

(l~,(y)12) ~ ]V2a2 ~ye, y---~ 

The choice of the superdiffusive scaling function is motivated by the results 
of refs. 2 and 3, which dealt with "purely stratified" velocities such that 
V(x, y) = (V~(y), o). 

The strategy for evaluating the effective probability distribution 
consists in, first, eliminating the high-wavenumber components of the 
velocity which are irrelevant, and, second, evaluating the distribution of the 
leading term using the self-averaging property of the path 6y(t/S2), 
0 ~< t ~< 1. First we show that the quantity 

f t/p ~xqt-~(2D)l/2 fll (-~)q-OOo Ul(X(s),y(s))ds 

converges to zero in probability as 6 + 0 .  In fact, since Ul(x,y) is an 
element of Jr one can construct as associated corrector by setting 
F(x, y) = U~(x, y) in Lemma 2. It follows from the arguments of Section 3, 
that 

p(2D) m fll + p U~(x(s), y(s)) ds, 0 <<. t <~ 1 

converges in distribution to a Brownian motion (2D*) m W(t), 0<~ t<<. 1 
(where D* is an appropriate diffusion coefficient, not to be confused with 
Dyv ), so that 

~x + 6(2D )m fl, ( -~)  + 6 ~/P2 Ul(x(s), y(s) ) ds= O (~ )  = O(6~/(2 +~)) 

as 6 ~ 0 .  
We are left with the computation of the asymptotic distribution of 

Recall that 

6 f~/p2 Vl(y(s)) as 

f+oo 
Vl(y) = e iky dgk V1 oo 
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where the spectral measure d(lCkVll2)=dkt(k)  satisfies, 
Proposition 1, 

f d#(k) 

according to 

It is convenient to define the truncated fields 

V2N(Y) = flkl >_-oN e~ky dgk V1 
(30) 

f+pN V2N(T) = e iky dgk ~'t 
pN 

where p is the time-scaling parameter and N is a large, positive number. 
Hence, we have 

(~ ft/p2 ff/p2 t/p2 
V,(y(s)) as = 6 v~.(y(s)) as + 6 ~ v~.(y(s)) as 

"0 ~0 

First, we show that the term involving V~N has a variance bounded by N -~ 
as 6 ---, 0, and thus that the contributions arising from it are negligible. For 
this, observe that V~u(y ) is in d /  with 

f d(Igk P;NI 2 ) k  2 = fJ-Ikl >~pxd~ (k) ~< const . (pN) -~ (31) 

Let Zp>N(X, y) be the corrector associated with F(x, y )= V;N(y ). Using the 
arguments of Section 3 (It6's formula), we have 

t/p 2 
~ v;N(y(s)) as 
~0 

=6gpu X ,y  

6z;,,(x, 0)  (2v) lj2 I f  - - VZ2N(X(S), y(s)), d[l(s) (32) 

The variance of the last stochastic integral is 

f~/p 2 1 
2D62 - (E{lVZ~N(X(s),y(s))12}) dxds 

P 

=2D62 f'/P21f~" oo p (IVz2N(x'~)12)axas 
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=2Dr 32 1 P 
p~pfo  (IVZ~N(X' O~)12) dx 

~< const - 2Dt ~2 (oN) g 

= const �9 (2Dt)N-* 

This estimate uses Lemma 2 and (31). On the other hand, the remainder 
in (32), 

r a(t) -- 6ZpN (X (fT) '  Y (~5) ) -- 6Z~N(x' O) 

converges to zero in probability. To see this, introduce the stopping time 
OR = inf{t ~< 1; p ly(t/p2)l >>. R}. Then, 

Pr{ra(t ) > e }  ~< Pr{ra(t )>c~; t<~OR} + Pr{ra(t )>c~, t >0R} 

~<Pr sup sup 6 ZpN X, > e  +Pr{t~>0R} 
L x E R  l Y I < R  

Given that ([V2~;N[ 2) ~<const. (pN) ~, and that 6 =p!+,/2, the first term 
converges to zero as 6--* 0, by Lemma 4'. Also, since py(t/p 2) is tight in 
C[0, 1] (cf. Proposition 5), 

lira Pr{t>~0R} = 0  
R - +  a~ 

and hence ra(t) converges to zero in probability. All this shows that 

f[~2 v~N(y(s)) ds 6 

is irrelevant in the sense that it converges in probability to a random 
variable with variance O(N-~). 

The last step consists of calculating the asymptotic distribution of the 
contribution from the infrared modes: 

t / p  2 

6 f V~N(y(s)) ds, 6 --+ 0 (33) 
o 0 

To illustrate the basic idea, we first give a proof for the simpler case in 
which V(y) is a self-similar Gaussian process. After that, a proof based 
upon the general assumptions on V(y) of Section 2 is carried out. 

822/69/3-4-17 
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4.1. S e l f - S i m i l a r  Gaussian Fields 

We assume here that 

/ ,  1 

Vl(y ) = ~a 1 ~/2 j Ikl~l-~)/2e'kY dN(k) 
--1 

where dN(k) is a Gaussian white noise, i.e., N(k) is a two-sided Brownian 
motion, and V and a denote, respectively, the typical velocity and length 
scale. Accordingly, we have 

V~N(y ) = ~.a 1 -~/2 flkt <~pN 

The integral in (33) can be rewritten as 

with 

Ikl ~1 -,)/2 eiky dN(k) (34) 

L t p 2  fO Vp<N (plpT(~2))dS~foV6IPY(P'2)]t S ds (35) 

~'(y) = ~-a I ~/2 f Ikl ( 1 -  e)/2eikY dN(k) 
d Ik[ <~ N 

where ?~(k) is again Brownian. Moreover, the stochastic process V(y) is 
almost surely continuous in y. Therefore, the quantity of interest, 

is a continuous function of the joint process IV(y), py(s/p2)], y e R ,  
0~<s~< t. From Proposition 5, it follows that the joint distribution of 
[P(y) ,  py(s/p2)] converges in the space of probability measures on 
C [ R ] |  to the distribution of (V(y), (2D*y)mW(t)), yEE,  
0 ~< t ~< 1, where W(t) is a Brownian motion which is independent of ~'. 
Since (36) is a continuous functional, it converges in distribution to the 
random variable 

f2 P((2D*yl~/Z W(s)) ds 

Using (34) and the scale invariance of Brownian motion, we find that 
V~(y) is stochastically equivalent to 
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In particular, the characteristic function of this random variable is 

(37) 

where RN(y) is the autocorrelation function of the process ~'(y), given by 

R N ( y  ) = ~2ae 2 f k I ~e iky dk 
Ikl ~< N 

Introducing the rescaled Brownian motion ~(s )=(1 / , ,~)W(s t )  and 
rescaling the Wiener integral in (37), we obtain 

{ i  ]} ~(u)(~, t ) = E  exp -- 22_~/2D,2_~/2 f u(]~ ) 
-- - - y y  

where 

ds 2 

This integral is known to converge as N--, ~ on a set of paths ]~ of 
measure one to Hence, the limit 

lira b(u)(~, t )= /5(~ ,  t) 
N ~ o o  

exists; it defines the Fourier transform of P~(x, t). Recalling that 

6 x ( ~ ) - - 6  ffP2 V~N(y(s))ds 

converges in probability to a random variable with variance O(N-') ,  we 
conclude that 6x(t/p 2) converges in probability to a random variable with 
distribution P~(x, t) with Fourier transform 

~2~'2a2-~_~/2 F(j~)I } 
~l(~' t )=  E {exp I - 2 2  ,/2(D.y)~ 

where 

ff(fl) =- Ikl 1-~ e ~ ' )  ds dk = F.(fl(s) - ~(s')) ds ds'. 
--oo 
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4.2. Fields Satisfying the Assumptions of Section 2 

Here we give an alternative proof of the above result which does not 
make use of the fact that V~(y) is Gaussian. We assume, however, that the 
rescaled field (6/p 2) V~(y/p) is asymptotically Gaussian, in the following 
sense: 

(i) 

(ii) 

The potential ~(y) = S~ Vl(s) ds satisfies 

(l~(Y)l 2 ) ~ ~'2a2-,y, ' y ~ 

The random process 

pE/2~l(Y), 0~<y<  + ~  

(39) 

converges in distribution to a Gaussian process ~(y)  with independent 
increments. 

As stated in Section 2, tp(y) is then necessarily a fractional Brownian 
motion, given by the stochastic integral 

~(y)  = const. Va I ~/2 fo dN(s) (y _ s)(1 + ~)/2 (39') 

where N(s) is a standard Brownian motion. (In ref. 3 we discussed several 
models of non-Gaussian fields which are consistent with these hypotheses.) 

We need to evaluate the asymptotic distribution of 

f ~/p2 (~ V~N(Y(S)) ds (40) 

where V;u(y ) is defined in (30). Notice that we can assume withouot loss 
of generality that the sharp cutoff at Ik[ = pN is replaced by a smooth one, 
i.e., that 

f 
+ o o  

V~u(y ) = f (pNk)e  iky d,~ k V1 

where f ( k )  is a smooth, even function supported in the interval [ -  1, 1 ], 
such that f (0 )  = 1 and f ( x )  = S eikxf(k) dk decays rapidly at infinity. 

A straightforward calculation shows that 

~o(y )=p~  Vp x =p~/2-, pMf(pMz)V --z dz 
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Therefore, making a change of variables in the integral and using integra- 
tion by parts, we have 

= p~/2 M Z f ' ( M ( y  - z)) 0 dz (41) 
o o  

Using the estimate (38) and the rapid decay at infinity of f ' ( M ( y - z ) )  it 
follows easily from the explicit formula (41) that 

and 

( I V~(y)t 2) ~< const 

(1Va(Y + h) - ~'6 (y)[  2 ) ~< const - Ihl 2 

with constants independent of 6. This implies that V6(y) is almost surely 
continuous, and that the family of processes {~'6} is tight in C[0, 1]. 
Moreover, from (41), ~'6(y) converges in distribution to 

V(y) = M 2 f ' ( M ( y  - z)) ~(z) dz 
- - c r  

The characterization (39') of t~(z) implies that 

V(y)=cons t - r ' a  1 ~/2 f + f  f(Mk)lkl(1-~)/2eiky dN(k) 

where N(k) is a Brownian motion. From this point on, the calculation of 
the asymptotic distribution of (40) is done exactly as in the Gaussian case. 
This concludes the proof of the main result: 

Proposition 6. Assume that VI(y) is a stationary random process 
such that O(y)= S~ Vl(s)ds satisfies 

(l~(Y)l 2) oc ~'2a2-~ly[~ 

for 0 < e < 2, and that p~/Z~p(y/p) converges in distribution to a Gaussian 
process with independent increments. Then, the probability density for the 
x coordinate of a particle evolving according to the Langevin equation (11 ) 
satisfies 

~o ,p  2 =P~(x , t )  
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with p(6)= 61+~/2,  where the Fourier transform fi~(k, t) of _Pl(X, t) is given 
by 

k2~-2tl+~/Za 2 c,~ 1 1 ds'} 
Pl(k, t)=E {exp ( -22_ , /2 (D,y) l_~ /S j  fo fo F,(~(s)-fl(s')) ds 

Here D*y is the transverse effective diffusitivity defined in (29), F~(y)= 
S+~ Ikl~-'eikYdk, and/~(s), 0~<s~< 1, is a standard Brownian motion. | 

Remark I. For brevity, we have not derived the corresponding limits 
for the mean-square displacements <a2x(t)>=(E{x(t)2}> and az ( t )=  
E{y(t)2}. These can be obtained by obvious variants of the proofs of 
the characterizations of the Green functions P~(x, t) and Pz(Y, t). The 
corresponding results for the mean-square displacements are 

lim a2(t) =2D*y (42) 
t ~  t 

in probability, and 

<a2(t) > C, P2a2- '  
lim t 1 +r;/2 - -  ( 2 / ' ) *  ]1--t;/2'  (43) 

t ~ ~ ~ - - - - y y  I 

where C~ is a numerical constant. 

Remark 2. The proof of Proposit ion6 suggests the intriguing 
possibility in which p~/2qj(y/p) does not converge to a Gaussian process as 
p ~ 0, even though we have <lqJ(y)[ 2 ) oc [y['. These pathological cases, of 
which quasiperiodic infrared-divergent fields VI(y) could be examples, will 
not have the same coarse-grained Green functions. In fact, the above 
arguments show that the distribution of the limit of p,/2~(y/p) as p ~ oo 
enters explicitly in the effective Green functions. On the other hand, the 
anomalous exponent p(6)=61+~/2 and the asymptotic relations for the 
mean-square displacements are expected to hold more generally, indepen- 
dent of the higher-order velocity statistics (see the next section). 

5. T H E  G R E E N  F U N C T I O N  A P P R O A C H  

An alternative approach for studying anomalous diffusion is to 
considea the average Green function of the corresponding advection-diffu- 
sion equation and to exploiot a rigorous resummation procedure for its 
perturbation expansion to study the limit 6 ~ 0. This method is quite 
general; it was developed in ref. 10 for the effective diffusion coefficient 
under condition (4)oand for Green functions in ref. 7. An advantage of the 
perturbation expansion method is that it does not require periodicity in x, 
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an assumption that was used in proving Lemmas 4 and 4' on the sublinear 
growth of the correctors. The main result that can be obtained in this way 
is a rigorous justification of the scaling properties of the Langevin equation 
(diffusive in y, superdiffusive in x) under very general assumptions on V1 
and U. On the other hand, the complete, explicit characterization of the 
effective Green functions by passing to the limit as f ~ 0 in the perturba- 
tion expansion is a cumbersome task. The reflects in part the fact that the 
effective Green function can depend on higher-order statistics of V 1 if the 
coarse-grained limit of p~/2~(y/p) is non-Gaussian and hence a detailed 
resummation of all diagrams is required. Fortunately, it is possible to 
determine the scaling behavior of the system (rigorously) in the case of 
nearly stratified flows by looking only at a few terms in the expansion. This 
is what we shall explain here, beginning with a brief review of perturbation 
theory for the averaged Green function, following ref. 7. 

We denote by P~(x,y,  t) the solution of the advection-diffusion 
equation 

OP(x, y, t) 
~t + z V ( x , y )  .V~yP(x ,y ,  t ) = D A P ( x , y ,  t) 

such that 

P~(x, y, o) = ~(x) ,~(y) 

and by Gz(x, y, s) its Laplace transform, 

fo +~ 
G~(x, y, s) = e "Pz(x ,  y, t) dt 

The parameter z in these equations represents a coupling constant which 
will be set to z = 1 in the end. Denote by G~(k, l, s) the Fourier transform 
of the average Green function (Gz(x ,  y, s ) ) ,  i.e., 

f4-~ fq-O0 
( Gz(x, y, s) ) = eikX + Uy Gz(k, l, s) dk dl 

- - ~  - -  o 0  

According to the results in ref. 7, G~(k, l, s) is, for each k, l, s, an analytic 
function of z for all z = zl + iz2 in the complement of the imaginary axis 
z = iz2. More precisely, we have 

1 
s + Dk  2 + DI 2 + S~(k, l, s) (44) 

dz(~,/, s) 

where Sz(k, l, s) is representable as a Stieltjes integral 

f + ~ z2v(k, I, s; dr) 
S~(k, l, s) = 1 + z2~ 2 

- - o o  

(45) 
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with respect of a family of positive measures v(k, l, s, d1-). The function 
Sz(k, l, s) is, in the language of field theory, the sum of all the connected 
diagrams in the perturbation expansion for G~(k, l, s) in powers of z, and 
(45) expresses the fact that S~(k, l, s) is summable for arbitrarily large 
values of the coupling constant z. We are interested in the behavior of 
(~(k, l, s) in the limit k ~ 0, l ~ 0, s ~ 0. Since the Laplace-Fourier trans- 
form of the scaled mean probability density 

is 
pZGz(6k , pl, pZs) 

we will study the limit of this quantity as 6 ~ 0 ,  p ~ O  with 
p = p(6)= 6 ~+~/2. From (44), (45), we have 

[pZGz(6k, pl, pZs)]-1 

6 2 "~- 1 
= s + -~ Dk 2 + Dl 2 ~5 S~(6k, p l, O2S) 

62 + 1 + ~ z2v(6k, pl, p2s; d1-) (46) 
= s +-fi7 Dk2 + Dl2 -~ f _ ~  1+2,2l -2 

Therefore, the renormalization problem consists in showing that the family 
of positive measures 

1 
v~(dT) = p - - ~  v(bk, p(6)l, p2(b)s; d1-), 6 > 0 (46') 

has a nontrivial limit as 6 ~ 0 ,  in the sense that (possibly along a 
subsequence of 6) v~(d1-)~9(d1-), where g(d1-)r This will follow if we 
can show that the zeroth- and second-order moments 

f + ~o v~(&) and 1-2 v~(&) (47) 
- - c l o  - - o o  

remain uniformly bounded as 6 ~ 0, and moreover that 
lim~,o S v~(&) r 0. (7) 

For simplicity in the calculations we shall assume that Vt(y) and 
U(x, y) are Gaussian, with V~(y) as in (8), and that U(x, y) has absolutely 
continuous spectral density (10(k,/)11) satisfying 

cc ([ r_?(k, z)l ~) ak al 
k2 + 12 < oo (48) JJ 
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We consider first the quantity S+~ va(&). From ref. 7, we have 

+~ b2k2<1121(q2)12 > dq2 
f ~ v~(&)=~fp2s+Dl6kl2+Dlpl+q212 

1 r( 62k2(lOa(q~,q2)12>dqldq2 
JJ p~l-&+q~l-Y--+Dlpl + q212 

1 ;~ p212<lO2(q~,q2)]2>dq~dq2 
JJ p ~ l - &  + q~l-~ L)lpl + q2[ 2 

(49) 

Clearly, 

6 2 k2<lO,(q~, q2)12> dq, dq2 
p-~ ff p2s+ D[6k +q~12 + Dlpl+q2l 2 

' 2k2 -o ( )  ~p--i ff 10~(q~, q2)l 2 62 
q~ + q~ ~-5 

and therefore this quantity tends to zero as 6 ~ 0. Also, 

lim ~ ~f p212(lO2(q~'q2)'2>dqldq2 
ato pZs+Dlbk+q~12+Dlpl+q2] 2 

~'t" <102(q1, q2)12> dq, dq2 
~ l 2 ]] q2+q2 < ~  

The first integral in (49) is asymptotic to 

~ f k2lq2'l-~ dq2 
P 2s + D62k2 +-D-~+ q212 

62p2 ~ (+oo k 2 Iq~l 1 ~ dql 
- p2 -~ s2+D62/p2k2+Dll+q,212 ] 

~ f+~ k2lq'2ll-" dq'2 
sZ + Dll+q'2[ 2 

This last quantity is finite for all l (in particular, for /=0) ,  since the 
integrand decays like [q~[-(~+~) for q;>>l. The finiteness of S+~ va(dz) 
implies that the motion in the y direction is diffusive. In fact, setting k = 0 
in (46), we obtain 

~+oo z2g(0, I, dr) 
lim [p2G~(O, pl, p2s)]- l=s+Dl2+j i + Z2~. 2 
p ~ O  --co 
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for some measure 9(0,/,dr) on ( - ~ , + ~ ) ,  which shows that 
p2Gz(O, pl, p2s) converges to a nontrivial limit. 

To analyze the motion in the x direction, we consider the second 
moments ~_+~ r2v~(dz). Since only macroscopic x displacements are of 
interest, we can take I= 0 in (46'). Using the Gaussianity of V(x, y), we can 
write, symbolically, 

f T of"bubble" of the forms v6(dr) s u m  diagrams 

/ ~ ' - ' ~ ~  and ~ (50) 
1 2 3 4 1 2 3 4 

The graphs in (50) are the ones introduced by Kraichnan, ~H) with points 
denoting velocity modes 9(q~, q2) and horizontal dashes denoting the 
free Green function (s + Dk2+ Dl 2) ~. The curved lines denote pairing of 
modes and averaging. To calculate (50), we observe that diagrams involv- 
ing only modes (IfJ(q~, q2)12~ are uniformly bounded, because of the 
mean-field condition (48) this was established in ref. 7. Also, notice that 
the diagrams in (50) which involve only the V1 field are known to be 
uniformly bounded, since they arise in the expansion for the Green's func- 
tion corresponding to the "purely" stratified flow (V~(y), 0). The study of 
such diagrams was also done in ref. 7. Therefore, the only diagrams that 
need to be studied in detail are those that contain both V~ and U1 or Uz. 
The general form of a multiple integral corresponding to the diagram 

in the expansion of (1/p 2) Sz(hk, 0, p2s) is 

1 [3-R(P) ' (4+ Q)] [ (3+P)-R(Q)'4]  dPdQ (51) 

where ~ = (6k, 0), P =  (0, P2), Q = ( q l ,  q2), and R(.) represents the two- 
point correlation tensor. We write a triple integral in (51) because only 
diagrams containing interactions between ( 1 I7"1 (P2)] 2 ) and ( I Ui (q 1, q2)l 2 ) 
need to be considered. Note also that we take the external wavevector 
parallel to the x direction. To estimate (51), we observe that 

~. R(P). (3 + Q) = ~k(IVl(p2)12>(~k + ql) 
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Notice that P2 and ql appear in the numerator of the integrand in (51). 
Therefore, this integral can be estimated from above by 

1 l~12(l~'~(p2)12)(lfd(q~,q2)12)dp2dqldq2 p iII - -  [p2s + Dl~ + pl2][p-2s + Dlr + Qi2] 

di2k2 f (II21(P2)I2>dp2 ~I Ifd(ql'q2)lZdqldq2 
p2 j s p212xjj p2s+DIr 

Making the change of variables p2=pp'2 in the integral and using 
p(6)=& 1+~/2 and (48), we conclude that such diagrams are bounded 
independently of 8, as in the analysis of the second moments. 

Similarly, the multiple integrals corresponding to the diagram 

are 

and 

_~T f f;  [~ .R(P) .r  + P) .R(Q) . (~  + P)] dP dQ (52) 

and 

62k 2 ((( ([Vl(P2)12>(lU(ql, q2)12> dp2 dql dq2 
p2 JJJ [p2s + D[~ + Q[2][p2s + al~ + P+ Q[2] (55) 

It now follows, by making the change of variables P2 = PP'z and using 
the relation T=61+'/2, that both integrals remain bounded as 6--,0, 
converging to 

k2 f lp2l ~ ~ dP2x II (IfA(qt'q2)lZ) dq~ dq2 
s + Dp 2 oJ D(q2 + q2) 

1 [ ( ~ + Q ) . R ( P ) . ( ~ + Q ) ] [ ~ . R ( Q ) . ~ ] d P d Q  
p--sfll [pas+Dlr ~ (53) 

with the same conventions. These two integrals can be bounded, 
respectively, by 

f2k2 l'('f ([V,(pa)la>(lO(qx, q2)[2> dp2 dq, dq2 
[p2~--~ ~ Fr ~--~ [ 2 ~  ~--D-~ ~-~ ~p---~- ~i-5- ] (54) JJJ p2 
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Therefore, we have shown that 

7 oo z2v(ak'O'p2s;d~)<~c< +~ 

where c is a constant independent of 6. The uniform boundedness of the 
second moment of (1/p2)v(6k, O, pZs, dr), together with the result for the 
zeroth-order moment ~ + ~ v6(dz), imply that 

lim[p2Gz(fk, O, p2s)] l = s + f  +~ 
zZg(k, s; dr) 

6{o -oo I + Z 2 Z  2 

where ~7(b, s, dz) is not identically zero. (7) This justifies rigorously the 
scaling exponent p(6)= 61+~/2 for the motion in the x direction for this 
class of nearly stratified flows. 

APPENDIX.  PROPERTIES OF THECORRECTORS 

The method of homogenization hinges on the construction of the 
auxiliary functions, or correctors, g(x, y). Here we present the proofs of the 
basic Lemmas 2, 3, 4, and 4', which were stated in Section 2. 

Proof of Lemma 2. According to the classical theory of homogeniza- 
tion for operators with periodic, oscillating coefficients ~ a unique solution 
of Eqs. (25), (26) exists if V l ( y ) ,  Ul(x,y), U2(x,y), and F(x,y) are 
periodic in x and y. The idea of the proof of this lemma is to approximate 
the functions V,(y), Ui(x, y), and F(x,y) by doubly periodic functions, 
with period N in the y direction, and to consider the sequence of corre- 
sponding c o r r e c t o r s  z(N)(x, y). The final result follows by letting N--* 0% 
after obtaining suitable estimates. Accordingly, let v~U)(y), u~N)(x,y), 
i :  1, 2, F(N)(x, y) be periodic with period p in x and period N in y. 
Moreover, assume that 

lim [Vl(y ) -  v~U)(y)[2dy = 0  (A.1) 
N ~ o o  

lim IUi(x,y)-U~N)(x,y)12dxdy = 0  (A.2) 
N ~ o O  

lim IF(x,y)-F(N)(x,y)lZdx = 0  (A.3) 
N ~ o o  
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For instance, this can be done by taking a discrete approximation of the 
spectral measure of the fields, e.g., 

v~N)(y) = ~, e2rtikn/N(f d~kV1) 
n= oo \ In 

n~-O 

where I n = {k: 2nn/N- n/N<~ k < 2nn/N+ n/N}, with similar definitions 
for the fields U}N)(x, y) and F(N)(x, y). 

For each realization ~o, let Z(N)(X, y) be the periodic solution of the cell 
problem 

(~ (N) (x ,  y )  
DzJz(N)(x'Y)+ [v~N)(Y)q- uIN)(x'Y)] r 

~ ( N ) ( x ,  y )  
-~- u(2N)(x, y )  - -  F(N)(x, y) ( A . 4 )  ay 

with 

Multiplying (A.4) by X~N)(x, y) and using integration by parts, one obtains 

pN DlVz(N)(x' y)12 dx dy 

- pN F(N)(x' y) z(N)(x' y) dx dy 

Using Plancherel's identity, we express the RHS in the form 

F(N)(m, k) ~(N)(m, k) 
m,k 

m2 + k2:~O 

This quantity is bounded by 

I ]F(N)(m, k)]2]l/2 [ 
E -~-+-k ~ A Z (m2-Fk2)l~.(N)(m,k)12] I/2 

m,k m,k 

<~ 2 m2+k 2 ~ IVg(N)(x,y)I2dxdy 
m,k 



724 

so that 
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IP(N)(x, y)l 2 
1 [P~NoiVz(N)(x,y)12dxdy<~ ~ D(m2+k2) " 

pN 30 30 m,k 
(A.5) 

[(~z(N)(x, y) (~z(N)(x, Y)] 
Er L ~ ' @ J 

we observe that E (N) satisfies equations analogous to (25) and (26), with 
coefficients V[ N), U} m, and F (N). Moreover, we have 

_l e ~|piN(EN(x,y)>dxdy=O 
pN Jo Jo 

and, averaging (A.5) with respect to the velocity statistics, 

1 f i r ?  _< 1 <lPr pN <IE(N)(x'y)I2>'~'-~ ~ m 2 + k  2 
m,k 

The right-hand side of this inequality is bounded uniformly, independently 
of N (because F is in J t )  and converges to 

1 d<ekPml2> 
D ~ f R  m Z + k  2 

as N--* ~ .  It is easy to conclude from this that the sequence of random 
fields EN(x, y) converge in probability (possibly along a subsequence) to a 
square-integrable, stationary random field E(x ,y)  in the space ~o (see 
Section 2) such that E(x, y ) =  E(x, ry~O) with 

1 d(IEkrml2> 
IIEll~<b-5 ~ IR m2+k 2 

m 

Since 

for all N, we also have 

N -~x E(2 )(x, y) = -~y E~N)(x, y) 

LOX E2(x' y) = ~y EI(X' y)" (A.6) 
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Finally, due to the strong convergence of the approximating fields [from 
(A.1)-(A.3)] we deduce from Eq. (A.4) that E(x, y) saitsfies the equation 

D (~E~(x, y) + D c3E2(x, y) + [ Z~(y) + U~(x, y)] E~(x, y) 
ax ay 
+ U2(x, y) E2(x, y) = F(x, y). (A.7) 

This concludes the proof of Lemma 2. 

Proof of Lemma 3. Here, we exploit the regularity of the coefficients 
(in x) to show that (0/3x)E(x, y) is square-integrable, i.e., that E(x, y) is 
in the space Jt~. To see this, we differentiate Eq. (A.7) with respect to x. 
Setting (d/0x)E = H, we have 

~H1 ~H2 c~F c~U1 c3U2 
D-~x +D-~-y +(VI+U1)HI+U2H2=ox ~x E1--~x E2 

We multiply this equation by E,(x,y), integrate with respect to x, and 
average. Using (A.6) and the incompressibility of V, we obtain 

p p ~F(x, y) dx I o l l  fo [n(x,y)[2dx)~-(l fo ~-----~El(X,Y) 
i 

'FIIf~xX) EI(x,y)2dx ) 

f eOU2(x,y)E2(x,y)E,(x,y)dx) 
,x  

From the estimate on }lEIIo obtained in Lemma 2 and the boundedness of 
OF/Ox, O UJOx, and ~U2/~?x we conclude that 

p const dx) I l  fo 'H(x,y)[2 dx) <~---~Cl (~f~ [E(x,y)' 2 

where 

I OF(x,y) ]OUl(x,y) dU2(x,y)] 
cl=sgp - - G - +  ax + j 

The conclusion of Lemma 3 is immediate. | 

Proof of Lernma 4. The goal is to establish the sublinear growth of 
the function Z(x, y) uniformly in x. More precisely, we shall show that for 
all ~>0,  M>O, 

l imPr{  sup s u p 6 1 z ( x , ~ ) > ~ } = 0  61.0 [y[<~M x 
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For this, we observe first that since Z is periodic in x, 

sup y) - Z(x', y) < const �9 dx' (A.8) 

Therefore, 

x v~o " 

Setting 

A(y)  = P )~(x, y) dx 

and 

{ [  ox 2dx}1/2, B(y)=  l i p  -~x(X,y) 

we claim that sUptyt_< ~ 6 fA(y/6)[ and supLy I.<M 6B(y/g)) both converge to 
zero in probability as 6--* 0. 

The analysis of suplyl~M6A(y/6 ) can be done as in the paper of 
Papanicolaou and Varadhan. ~5) We include here a sketch of the proof and 
refer to ref. 5 for complete details. By definition 

A(y) = ds 

where E2.o(') is the Fourier coefficient of order m = 0 of the function 
E2(x, co). Rescaling, we have 

3A = 3 E2,o(%O~) ds 

Since (~2,o(0)))=0 because E 2 has mean zero, we can apply the 
L2-ergodic theorem to conclude that 

for each y s R. To estimate the supremum of 6A(y/6), lYl < M, we partition 
the interval I - M ,  + M ]  into small subintervals and use (A.9) together 
with equicontinuity of 3A(y/3). Specifically, set 

n 
Y " = N '  -NM<~n<~ + N M  (A.10) 
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where N is a larger integer, and write 

~<~Pr t sup 6 A ( ~ ) > @  
n t ly--Yn[ <~ 1 /N  

~ Pr sup 6A - 6A > 
n k l y - - y n [  <~ ! / N  I 

+ ~ P r  6 I A  > 
n 

From (A.9), the second term converges to zero as 6--+ 0. Concerning the 
first term, we note that 

su~ ~(~) ~(~) 
l Y - Ynl <~ 1IN 

= sup 6 fY/3 (Ts~2,o)ds 
lY - -  Ynl <~ 1 /N  ~ Yn/6 

~ (Yn + 1 / N ) / 6  

~< ~ I TsE2,0l ds 
~ ( Y n -  1 /N) /a  

Therefore, using Chebyshev's inequality, we obtain 

Pr{,y sy~Pl/u 6 A ( ~ ) - 6 A ( - ~ ) > ; }  

4 / [ ~  S~l~ ~ ~ (;)~ (~)]~) 

-~- \\~(y. 1/N)/6 

462 4 z) 
~< ~2 N2~2 <1~2,ol 

16 = 
- ~2N2 (IE2,ol 2) 

where we used Jensen's inequality and the fact that T, is an isometry. 
Summing over the contributions of each subinterval l Y - Y , ]  <~ I /N,  we 
obtain 

t (~ )  ( 9 ) ; }  -< 32M (Ij}z'~ Pr sup 6A - 6A > .~. c~2N 
n k l y  Ynl <~ 1IN 

822/69/3-4-18 
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Since N is arbitrary, this implies that suply I <~M fi IA(y/fi)l converges to zero 
in probability. 

It remains to estimate the random variable SUPly I <.<.M f iB(y / f i ) .  This is 
done in a similar way: first observe that 

by stationarity, so fiB(y/b) converges pointwise to zero. To estimate the 
supremum for ly[<~M, we partition the interval [ - M , M ]  into sub- 
intervals of width O(1/N) and use equicontinuity in L 2. Accordingly, if y ,  
denotes the partition in (A.IO), we have 

sup b2B ~< max sup fi2B 
lYl ~< 1/M n lY Ynl <~ 1/N 

n l y - y n l  <~ I /N  

~<~ sup fi2 B - B  + fi2B 
n lY--Yn[<~I/N 

Pointwise convergence of fiB(y/b) implies that the second sum in this 
estimate converges to zero. To the first sum, we observe that 

Therefore, 

= - -  (x ,s )ds  dx 
P "Jyn/b 

fi2 fo~ ~y/a OE 2 2 P oy,/-~x (x,s) ds dx 

According to Lemma 3, lIE211 ff is finite. Finally, summing over the contribu- 
tions of all subintervals, we obtain 

\ l y _ y n j < ~ l / N  ~ N 

which is negligible, since N is arbitrarily small. 
This concludes the proof of Lemma 4. | 

su ljN 2 
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R e m a r k .  The estimates obtained in the p roof  of Lemma 4 also yield 
an estimate of the variance of supEy t _<M SUPx~R fiX(X, y / f ) .  In fact, taking a 
trivial part i t ion consisting of  one interval and applying the above 
arguments,  one concludes that 

sup &2 A ~<const .(1 +M2) t l~ t lo  2 
\lyl~<M 

and 

f f s u p  O2B ~ c o n s t .  (1 + M)IIEII~ 
\[yl<~M 

Putt ing together these esimates and using Lemma 3, we conclude that 

( ( y )  2 )  l+M2 + ~  d(l~k~ml2) 
sup sup 0 2 Z x, ~ ~<const- D ~  f k 2 + m 2  

\lyl<<.M x~R , --oe 

Hence, the claim of  L e m m a  4'  in Section 2 is also established. 
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